TM-208

COEFFICIENTS OF POWER SERIES EXPANSION OF MAGNETIC LENGTH FROM MEASUREMENTS OF GRADIENT LENGTH

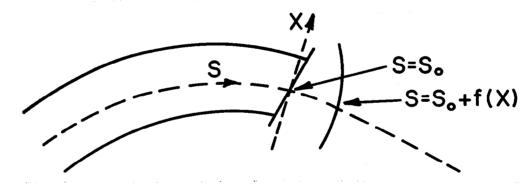
S. C. Snowdon

February 6, 1970

Let the effective azimuthal termination of the magnetic field within a magnet be described by a curve

$$\dot{s} = s_0 + f(x) \tag{1}$$

where s is the usual variable measuring distance along the central orbit and x is the transverse distance orthogonal to s.



The meaning of an effective termination is that

$$B(x,s) = B(x) \{1-S(s-s_0-f(x))\},$$
 (2)

where S is a step function. Thus

$$B'(x,s) = B'(x)\{1-S\} + B(x)f'(x)\delta.$$
 (3)

This gives on integrating from $s = s_1$, a position well within the magnet

$$\int_{s_1}^{\infty} B'ds = B'(x)(s-s_1) + B(x)f'(x). \tag{4}$$

Also

$$\int_{s_1}^{\infty} Bds = B(x) (s-s_1).$$
 (5)

Eliminating $s-s_1$ between Eqs. (4) and (5) gives

$$f'(x) = \frac{B'(x)}{B(x)} \cdot \left\{ \frac{\int_{B'(x)}^{\infty} B'ds}{\frac{s_1}{B'(x)} - \frac{s_1}{B(x)}} \right\}. \quad (6)$$

But from Eq. (5)

$$\Delta L_{B} \equiv s-s_{0} = \frac{s_{1}}{B(x)} - (s_{0}-s_{1})$$
 (7)

and from Eq. (1)

$$\Delta L_{B} = f(x) \tag{8}$$

Thus, if

$$\int_{B'ds}^{\infty} ds$$

$$\Delta L_{G} = \frac{s_{1}}{B'(x)} - (s_{0} - s_{1})$$
(9)

it follows that

$$\Delta L'_{B} = \frac{B'(x)}{B(x)} \cdot (\Delta L_{G} - \Delta L_{B})$$
 (10)

PROBLEM

Given that

$$\Delta L_{B} = \Delta S + \sum_{T} D(I) x^{T}, \qquad (11)$$

find ΔL_G .

It is convenient to represent B'(x) and B(x) in terms of dimensionless variables

$$g(x) = \frac{B'(x)}{B'(0)}$$
 $b(x) = \frac{B(x)}{B(0)}$. (12)

To restore dimensions one introduces

$$k = \frac{B'(0)}{B(0)}$$
, (13)

the profile parameter. Thus Eq. (10) becomes

$$\Delta L_{G} - \Delta S - \sum_{T} D(I) x^{T} = \frac{1}{k} \cdot \frac{b(x)}{g(x)} \sum_{T} ID(I) x^{T-1}. \quad (14)$$

If one puts

$$T(J,I) = \frac{I}{k} \cdot \frac{b(x_J)}{g(x_J)} \cdot x_J^{I-1} + x_J^{I},$$
 (15)

and

GEND(J) =
$$\Delta L(x_T) - \Delta S$$
, (16)

then

$$\sum T(J,I)D(I) = GEND(J), \qquad (17)$$

where x is evaluated at the points x_J .

Let

$$SUM(K) = \sum_{J} W(J) GEND(J) T(J,K), \qquad (18)$$

and

$$C(K,L) = \sum_{J} W(J)T(J,K)T(J,L), \qquad (19)$$

then

$$\sum_{K} C(K,L)D(K) = SUM(L).$$
 (20)

Matrix inversion yields D(K).

The above considerations have been coded in the program GFITT.